Paper Reading AI Learner

Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy

2021-02-15 19:10:52
Rajat Sen, Alexander Rakhlin, Lexing Ying, Rahul Kidambi, Dean Foster, Daniel Hill, Inderjit Dhillon

Abstract

Motivated by modern applications, such as online advertisement and recommender systems, we study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous, and the learner is allowed to select $k$ arms and observe all or some of the rewards for the chosen arms. We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy for selecting multiple arms. We show that our algorithm has a regret guarantee of $O(k\sqrt{(A-k+1)T \log (|\mathcal{F}|T)})$, where $A$ is the total number of arms and $\mathcal{F}$ is the class containing the regression function, while only requiring $\tilde{O}(A)$ computation per time step. In the extreme setting, where the total number of arms can be in the millions, we propose a practically-motivated arm hierarchy model that induces a certain structure in mean rewards to ensure statistical and computational efficiency. The hierarchical structure allows for an exponential reduction in the number of relevant arms for each context, thus resulting in a regret guarantee of $O(k\sqrt{(\log A-k+1)T \log (|\mathcal{F}|T)})$. Finally, we implement our algorithm using a hierarchical linear function class and show superior performance with respect to well-known benchmarks on simulated bandit feedback experiments using extreme multi-label classification datasets. On a dataset with three million arms, our reduction scheme has an average inference time of only 7.9 milliseconds, which is a 100x improvement.

Abstract (translated)

URL

https://arxiv.org/abs/2102.07800

PDF

https://arxiv.org/pdf/2102.07800.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot