Paper Reading AI Learner

Semi Supervised Learning For Few-shot Audio Classification By Episodic Triplet Mining

2021-02-16 10:55:31
Swapnil Bhosale, Rupayan Chakraborty, Sunil Kumar Kopparapu


Few-shot learning aims to generalize unseen classes that appear during testing but are unavailable during training. Prototypical networks incorporate few-shot metric learning, by constructing a class prototype in the form of a mean vector of the embedded support points within a class. The performance of prototypical networks in extreme few-shot scenarios (like one-shot) degrades drastically, mainly due to the desuetude of variations within the clusters while constructing prototypes. In this paper, we propose to replace the typical prototypical loss function with an Episodic Triplet Mining (ETM) technique. The conventional triplet selection leads to overfitting, because of all possible combinations being used during training. We incorporate episodic training for mining the semi hard positive and the semi hard negative triplets to overcome the overfitting. We also propose an adaptation to make use of unlabeled training samples for better modeling. Experimenting on two different audio processing tasks, namely speaker recognition and audio event detection; show improved performances and hence the efficacy of ETM over the prototypical loss function and other meta-learning frameworks. Further, we show improved performances when unlabeled training samples are used.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot