Paper Reading AI Learner

'Train one, Classify one, Teach one' -- Cross-surgery transfer learning for surgical step recognition

2021-02-24 14:36:18
Daniel Neimark, Omri Bar, Maya Zohar, Gregory D. Hager, Dotan Asselmann

Abstract

Prior work demonstrated the ability of machine learning to automatically recognize surgical workflow steps from videos. However, these studies focused on only a single type of procedure. In this work, we analyze, for the first time, surgical step recognition on four different laparoscopic surgeries: Cholecystectomy, Right Hemicolectomy, Sleeve Gastrectomy, and Appendectomy. Inspired by the traditional apprenticeship model, in which surgical training is based on the Halstedian method, we paraphrase the "see one, do one, teach one" approach for the surgical intelligence domain as "train one, classify one, teach one". In machine learning, this approach is often referred to as transfer learning. To analyze the impact of transfer learning across different laparoscopic procedures, we explore various time-series architectures and examine their performance on each target domain. We introduce a new architecture, the Time-Series Adaptation Network (TSAN), an architecture optimized for transfer learning of surgical step recognition, and we show how TSAN can be pre-trained using self-supervised learning on a Sequence Sorting task. Such pre-training enables TSAN to learn workflow steps of a new laparoscopic procedure type from only a small number of labeled samples from the target procedure. Our proposed architecture leads to better performance compared to other possible architectures, reaching over 90% accuracy when transferring from laparoscopic Cholecystectomy to the other three procedure types.

Abstract (translated)

URL

https://arxiv.org/abs/2102.12308

PDF

https://arxiv.org/pdf/2102.12308.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot