Paper Reading AI Learner

A Holistic Motion Planning and Control Solution to Challenge a Professional Racecar Driver

2021-02-28 00:06:10
Sirish Srinivasan, Sebastian Nicolas Giles, Alexander Liniger

Abstract

We present a holistically designed three layer control architecture capable of outperforming a professional driver racing the same car. Our approach focuses on the co-design of the motion planning and control layers, extracting the full potential of the connected system. First, a high-level planner computes an optimal trajectory around the track, then in real-time the mid-level nonlinear model predictive controller follows this path using the high-level information as guidance. Finally a high frequency, low-level controller tracks the states predicted by the mid-level controller. Tracking the predicted behavior has two advantages: it reduces the mismatch between the model used in the upper layers and the real car, and allows for a torque vectoring command to be optimized by the higher level motion planners. The tailored design of the low-level controller proved to be crucial for bridging the gap between planning and control, unlocking unseen performance in autonomous racing. The proposed approach was verified on a full size racecar, resulting in a considerable improvement over the state-of-the-art results achieved on the same vehicle. Finally, we also show that the proposed co-design approach outperforms a professional racecar driver.

Abstract (translated)

URL

https://arxiv.org/abs/2103.00358

PDF

https://arxiv.org/pdf/2103.00358.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot