Paper Reading AI Learner

Super-Resolving Cross-Domain Face Miniatures by Peeking at One-Shot Exemplar

2021-03-16 05:47:26
Peike Li, Xin Yu, Yi Yang

Abstract

Conventional face super-resolution methods usually assume testing low-resolution (LR) images lie in the same domain as the training ones. Due to different lighting conditions and imaging hardware, domain gaps between training and testing images inevitably occur in many real-world scenarios. Neglecting those domain gaps would lead to inferior face super-resolution (FSR) performance. However, how to transfer a trained FSR model to a target domain efficiently and effectively has not been investigated. To tackle this problem, we develop a Domain-Aware Pyramid-based Face Super-Resolution network, named DAP-FSR network. Our DAP-FSR is the first attempt to super-resolve LR faces from a target domain by exploiting only a pair of high-resolution (HR) and LR exemplar in the target domain. To be specific, our DAP-FSR firstly employs its encoder to extract the multi-scale latent representations of the input LR face. Considering only one target domain example is available, we propose to augment the target domain data by mixing the latent representations of the target domain face and source domain ones, and then feed the mixed representations to the decoder of our DAP-FSR. The decoder will generate new face images resembling the target domain image style. The generated HR faces in turn are used to optimize our decoder to reduce the domain gap. By iteratively updating the latent representations and our decoder, our DAP-FSR will be adapted to the target domain, thus achieving authentic and high-quality upsampled HR faces. Extensive experiments on three newly constructed benchmarks validate the effectiveness and superior performance of our DAP-FSR compared to the state-of-the-art.

Abstract (translated)

URL

https://arxiv.org/abs/2103.08863

PDF

https://arxiv.org/pdf/2103.08863.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot