Paper Reading AI Learner

Flow-based Self-supervised Density Estimation for Anomalous Sound Detection

2021-03-16 01:52:03
Kota Dohi, Takashi Endo, Harsh Purohit, Ryo Tanabe, Yohei Kawaguchi

Abstract

tract: To develop a machine sound monitoring system, a method for detecting anomalous sound is proposed. Exact likelihood estimation using Normalizing Flows is a promising technique for unsupervised anomaly detection, but it can fail at out-of-distribution detection since the likelihood is affected by the smoothness of the data. To improve the detection performance, we train the model to assign higher likelihood to target machine sounds and lower likelihood to sounds from other machines of the same machine type. We demonstrate that this enables the model to incorporate a self-supervised classification-based approach. Experiments conducted using the DCASE 2020 Challenge Task2 dataset showed that the proposed method improves the AUC by 4.6% on average when using Masked Autoregressive Flow (MAF) and by 5.8% when using Glow, which is a significant improvement over the previous method.

Abstract (translated)

URL

https://arxiv.org/abs/2103.08801

PDF

https://arxiv.org/pdf/2103.08801


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot