Paper Reading AI Learner

BERTSurv: BERT-Based Survival Models for Predicting Outcomes of Trauma Patients

2021-03-19 17:49:00
Yun Zhao, Qinghang Hong, Xinlu Zhang, Yu Deng, Yuqing Wang, Linda Petzold

Abstract

Survival analysis is a technique to predict the times of specific outcomes, and is widely used in predicting the outcomes for intensive care unit (ICU) trauma patients. Recently, deep learning models have drawn increasing attention in healthcare. However, there is a lack of deep learning methods that can model the relationship between measurements, clinical notes and mortality outcomes. In this paper we introduce BERTSurv, a deep learning survival framework which applies Bidirectional Encoder Representations from Transformers (BERT) as a language representation model on unstructured clinical notes, for mortality prediction and survival analysis. We also incorporate clinical measurements in BERTSurv. With binary cross-entropy (BCE) loss, BERTSurv can predict mortality as a binary outcome (mortality prediction). With partial log-likelihood (PLL) loss, BERTSurv predicts the probability of mortality as a time-to-event outcome (survival analysis). We apply BERTSurv on Medical Information Mart for Intensive Care III (MIMIC III) trauma patient data. For mortality prediction, BERTSurv obtained an area under the curve of receiver operating characteristic curve (AUC-ROC) of 0.86, which is an improvement of 3.6% over baseline of multilayer perceptron (MLP) without notes. For survival analysis, BERTSurv achieved a concordance index (C-index) of 0.7. In addition, visualizations of BERT's attention heads help to extract patterns in clinical notes and improve model interpretability by showing how the model assigns weights to different inputs.

Abstract (translated)

URL

https://arxiv.org/abs/2103.10928

PDF

https://arxiv.org/pdf/2103.10928.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot