Paper Reading AI Learner

The Gradient Convergence Bound of Federated Multi-Agent Reinforcement Learning with Efficient Communication

2021-03-24 07:21:43
Xing Xu, Rongpeng Li, Zhifeng Zhao, Honggang Zhang

Abstract

The paper considers a distributed version of deep reinforcement learning (DRL) for multi-agent decision-making process in the paradigm of federated learning. Since the deep neural network models in federated learning are trained locally and aggregated iteratively through a central server, frequent information exchange incurs a large amount of communication overheads. Besides, due to the heterogeneity of agents, Markov state transition trajectories from different agents are usually unsynchronized within the same time interval, which will further influence the convergence bound of the aggregated deep neural network models. Therefore, it is of vital importance to reasonably evaluate the effectiveness of different optimization methods. Accordingly, this paper proposes a utility function to consider the balance between reducing communication overheads and improving convergence performance. Meanwhile, this paper develops two new optimization methods on top of variation-aware periodic averaging methods: 1) the decay-based method which gradually decreases the weight of the model's local gradients within the progress of local updating, and 2) the consensus-based method which introduces the consensus algorithm into federated learning for the exchange of the model's local gradients. This paper also provides novel convergence guarantees for both developed methods and demonstrates their effectiveness and efficiency through theoretical analysis and numerical simulation results.

Abstract (translated)

URL

https://arxiv.org/abs/2103.13026

PDF

https://arxiv.org/pdf/2103.13026.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot