Paper Reading AI Learner

Bayesian Graph Convolutional Network for Traffic Prediction

2021-04-01 14:19:37
Jun Fu, Wei Zhou, Zhibo Chen

Abstract

Recently, adaptive graph convolutional network based traffic prediction methods, learning a latent graph structure from traffic data via various attention-based mechanisms, have achieved impressive performance. However, they are still limited to find a better description of spatial relationships between traffic conditions due to: (1) ignoring the prior of the observed topology of the road network; (2) neglecting the presence of negative spatial relationships; and (3) lacking investigation on uncertainty of the graph structure. In this paper, we propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues. Under this framework, the graph structure is viewed as a random realization from a parametric generative model, and its posterior is inferred using the observed topology of the road network and traffic data. Specifically, the parametric generative model is comprised of two parts: (1) a constant adjacency matrix which discovers potential spatial relationships from the observed physical connections between roads using a Bayesian approach; (2) a learnable adjacency matrix that learns a global shared spatial correlations from traffic data in an end-to-end fashion and can model negative spatial correlations. The posterior of the graph structure is then approximated by performing Monte Carlo dropout on the parametric graph structure. We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2104.00488

PDF

https://arxiv.org/pdf/2104.00488.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot