Paper Reading AI Learner

An early warning AI-powered portable system to reduce workload and inspect environmental damage after natural disasters

2021-04-02 03:51:47
Aryia Dattamajumdar

Abstract

1.3 million household fires, 3,400 civilian deaths, and 23 billion dollars in damage, a fire department is called to respond every 24 seconds. Many firefighters are injured during search and rescue operations due to hidden dangers. Additionally, fire-retardant water runoff pollution can threaten human health. My goal is to develop a system to monitor calamity-induced environment damage to provide early-intelligence to incident-commanders. I have developed a multi-spectral sensing system to inspect air and water quality for safer and accessible hazardous environment operations. Key components include a) drone mounted with four sensors (gas sensors, thermal camera, GPS sensor, visual camera) and wireless communicator for inspection, b) AI-powered computer vision base-station to identify targets, c) low-cost, portable, spectral water quality analyzer and d) robotic retriever. The prototype demonstrates the potential for safer and more accessible search and rescue operations for fire-fighters and scientists. The gas sensor could identify thick smoke situations (thresholds > 400). The visual and thermal cameras detected hidden hot objects and sent images to AI-powered analyzer to identify and localize target with rescue GPS coordinates for robotic retrieval. Water quality was analyzed with spectral signatures to indicate turbidity levels that correlate with potential pollutants (threshold > 1.3). Prototype results were shown to the Sunnyvale fire department and received encouraging feedback. Future goals include monitoring firefighter health and overexertion with smart clothes.

Abstract (translated)

URL

https://arxiv.org/abs/2104.00876

PDF

https://arxiv.org/pdf/2104.00876.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot