Paper Reading AI Learner

Drowned out by the noise: Evidence for Tracking-free Motion Prediction

2021-04-16 21:03:55
Ameni Trabelsi, Ross J. Beveridge, Nathaniel Blanchard

Abstract

Autonomous driving consists of a multitude of interacting modules, where each module must contend with errors from the others. Typically, the motion prediction module depends on a robust tracking system to capture each agent's past movement. In this work, we systematically explore the importance of the tracking module for the motion prediction task and ultimately conclude that the tracking module is detrimental to overall motion prediction performance when the module is imperfect (with as low as 1% error). We explicitly compare models that use tracking information to models that do not across multiple scenarios and conditions. We find that the tracking information only improves performance in noise-free conditions. A noise-free tracker is unlikely to remain noise-free in real-world scenarios, and the inevitable noise will subsequently negatively affect performance. We thus argue future work should be mindful of noise when developing and testing motion/tracking modules, or that they should do away with the tracking component entirely.

Abstract (translated)

URL

https://arxiv.org/abs/2104.08368

PDF

https://arxiv.org/pdf/2104.08368.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot