Paper Reading AI Learner

VeriMedi: Pill Identification using Proxy-based Deep Metric Learning and Exact Solution

2021-04-22 06:52:30
Tekin Evrim Ozmermer, Viktors Roze, Stanislavs Hilcuks, Alina Nescerecka

Abstract

We present the system that we have developed for the identification and verification of pills using images that are taken by the VeriMedi device. The VeriMedi device is an Internet of Things device that takes pictures of a filled pill vial from the bottom of the vial and uses the solution that is presented in this research to identify the pills in the vials. The solution has two serially connected deep learning solutions which do segmentation and identification. The segmentation solution creates the masks for each pill in the vial image by using the Mask R-CNN model, then segments and crops the pills and blurs the background. After that, the segmented pill images are sent to the identification solution where a Deep Metric Learning model that is trained with Proxy Anchor Loss (PAL) function generates embedding vectors for each pill image. The generated embedding vectors are fed into a one-layer fully connected network that is trained with the exact solution to predict each single pill image. Then, the aggregation/verification function aggregates the multiple predictions coming from multiple single pill images and verifies the correctness of the final prediction with respect to predefined rules. Besides, we enhanced the PAL with a better proxy initialization that increased the performance of the models and let the model learn the new classes of images continually without retraining the model with the whole dataset. When the model that is trained with initial classes is retrained only with new classes, the accuracy of the model increases for both old and new classes. The identification solution that we have presented in this research can also be reused for other problem domains which require continual learning and/or Fine-Grained Visual Categorization.

Abstract (translated)

URL

https://arxiv.org/abs/2104.11231

PDF

https://arxiv.org/pdf/2104.11231.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot