Paper Reading AI Learner

Represent Items by Items: An Enhanced Representation of the Target Item for Recommendation

2021-04-26 11:28:28
Yinjiang Cai, Zeyu Cui, Shu Wu, Zhen Lei, Xibo Ma

Abstract

Item-based collaborative filtering (ICF) has been widely used in industrial applications such as recommender system and online advertising. It models users' preference on target items by the items they have interacted with. Recent models use methods such as attention mechanism and deep neural network to learn the user representation and scoring function more accurately. However, despite their effectiveness, such models still overlook a problem that performance of ICF methods heavily depends on the quality of item representation especially the target item representation. In fact, due to the long-tail distribution in the recommendation, most item embeddings can not represent the semantics of items accurately and thus degrade the performance of current ICF methods. In this paper, we propose an enhanced representation of the target item which distills relevant information from the co-occurrence items. We design sampling strategies to sample fix number of co-occurrence items for the sake of noise reduction and computational cost. Considering the different importance of sampled items to the target item, we apply attention mechanism to selectively adopt the semantic information of the sampled items. Our proposed Co-occurrence based Enhanced Representation model (CER) learns the scoring function by a deep neural network with the attentive user representation and fusion of raw representation and enhanced representation of target item as input. With the enhanced representation, CER has stronger representation power for the tail items compared to the state-of-the-art ICF methods. Extensive experiments on two public benchmarks demonstrate the effectiveness of CER.

Abstract (translated)

URL

https://arxiv.org/abs/2104.12483

PDF

https://arxiv.org/pdf/2104.12483.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot