Paper Reading AI Learner

What can the millions of random treatments in nonexperimental data reveal about causes?

2021-05-03 20:13:34
Andre F. Ribeiro, Frank Neffke, Ricardo Hausmann

Abstract

We propose a new method to estimate causal effects from nonexperimental data. Each pair of sample units is first associated with a stochastic 'treatment' - differences in factors between units - and an effect - a resultant outcome difference. It is then proposed that all such pairs can be combined to provide more accurate estimates of causal effects in observational data, provided a statistical model connecting combinatorial properties of treatments to the accuracy and unbiasedness of their effects. The article introduces one such model and a Bayesian approach to combine the $O(n^2)$ pairwise observations typically available in nonexperimnetal data. This also leads to an interpretation of nonexperimental datasets as incomplete, or noisy, versions of ideal factorial experimental designs. This approach to causal effect estimation has several advantages: (1) it expands the number of observations, converting thousands of individuals into millions of observational treatments; (2) starting with treatments closest to the experimental ideal, it identifies noncausal variables that can be ignored in the future, making estimation easier in each subsequent iteration while departing minimally from experiment-like conditions; (3) it recovers individual causal effects in heterogeneous populations. We evaluate the method in simulations and the National Supported Work (NSW) program, an intensively studied program whose effects are known from randomized field experiments. We demonstrate that the proposed approach recovers causal effects in common NSW samples, as well as in arbitrary subpopulations and an order-of-magnitude larger supersample with the entire national program data, outperforming Statistical, Econometrics and Machine Learning estimators in all cases...

Abstract (translated)

URL

https://arxiv.org/abs/2105.01152

PDF

https://arxiv.org/pdf/2105.01152.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot