Paper Reading AI Learner

Hardware Synthesis of State-Space Equations; Application to FPGA Implementation of Shallow and Deep Neural Networks

2021-05-15 04:00:28
Amir-Hossein Kiamarzi, Pezhman Torabi, Reza Sameni

Abstract

Nowadays, shallow and deep Neural Networks (NNs) have vast applications including biomedical engineering, image processing, computer vision, and speech recognition. Many researchers have developed hardware accelerators including field-programmable gate arrays (FPGAs) for implementing high-performance and energy efficient NNs. Apparently, the hardware architecture design process is specific and time-consuming for each NN. Therefore, a systematic way to design, implement and optimize NNs is highly demanded. The paper presents a systematic approach to implement state-space models in register transfer level (RTL), with special interest for NN implementation. The proposed design flow is based on the iterative nature of state-space models and the analogy between state-space formulations and finite-state machines. The method can be used in linear/nonlinear and time-varying/time-invariant systems. It can also be used to implement either intrinsically iterative systems (widely used in various domains such as signal processing, numerical analysis, computer arithmetic, and control engineering), or systems that could be rewritten in equivalent iterative forms. The implementation of recurrent NNs such as long short-term memory (LSTM) NNs, which have intrinsic state-space forms, are another major applications for this framework. As a case study, it is shown that state-space systems can be used for the systematic implementation and optimization of NNs (as nonlinear and time-varying dynamic systems). An RTL code generating software is also provided online, which simplifies the automatic generation of NNs of arbitrary size.

Abstract (translated)

URL

https://arxiv.org/abs/2105.07131

PDF

https://arxiv.org/pdf/2105.07131.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot