Paper Reading AI Learner

Towards a Mathematical Theory of Abstraction

2021-06-03 13:23:49
Beren Millidge

Abstract

While the utility of well-chosen abstractions for understanding and predicting the behaviour of complex systems is well appreciated, precisely what an abstraction $\textit{is}$ has so far has largely eluded mathematical formalization. In this paper, we aim to set out a mathematical theory of abstraction. We provide a precise characterisation of what an abstraction is and, perhaps more importantly, suggest how abstractions can be learnt directly from data both for static datasets and for dynamical systems. We define an abstraction to be a small set of `summaries' of a system which can be used to answer a set of queries about the system or its behaviour. The difference between the ground truth behaviour of the system on the queries and the behaviour of the system predicted only by the abstraction provides a measure of the `leakiness' of the abstraction which can be used as a loss function to directly learn abstractions from data. Our approach can be considered a generalization of classical statistics where we are not interested in reconstructing `the data' in full, but are instead only concerned with answering a set of arbitrary queries about the data. While highly theoretical, our results have deep implications for statistical inference and machine learning and could be used to develop explicit methods for learning precise kinds of abstractions directly from data.

Abstract (translated)

URL

https://arxiv.org/abs/2106.01826

PDF

https://arxiv.org/pdf/2106.01826.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot