Paper Reading AI Learner

Evaluating Meta-Feature Selection for the Algorithm Recommendation Problem

2021-06-07 20:36:47
Geand Trindade Pereira, Moises Rocha dos Santos, Andre Carlos Ponce de Leon Ferreira de Carvalho

Abstract

With the popularity of Machine Learning (ML) solutions, algorithms and data have been released faster than the capacity of processing them. In this context, the problem of Algorithm Recommendation (AR) is receiving a significant deal of attention recently. This problem has been addressed in the literature as a learning task, often as a Meta-Learning problem where the aim is to recommend the best alternative for a specific dataset. For such, datasets encoded by meta-features are explored by ML algorithms that try to learn the mapping between meta-representations and the best technique to be used. One of the challenges for the successful use of ML is to define which features are the most valuable for a specific dataset since several meta-features can be used, which increases the meta-feature dimension. This paper presents an empirical analysis of Feature Selection and Feature Extraction in the meta-level for the AR problem. The present study was focused on three criteria: predictive performance, dimensionality reduction, and pipeline runtime. As we verified, applying Dimensionality Reduction (DR) methods did not improve predictive performances in general. However, DR solutions reduced about 80% of the meta-features, obtaining pretty much the same performance as the original setup but with lower runtimes. The only exception was PCA, which presented about the same runtime as the original meta-features. Experimental results also showed that various datasets have many non-informative meta-features and that it is possible to obtain high predictive performance using around 20% of the original meta-features. Therefore, due to their natural trend for high dimensionality, DR methods should be used for Meta-Feature Selection and Meta-Feature Extraction.

Abstract (translated)

URL

https://arxiv.org/abs/2106.03954

PDF

https://arxiv.org/pdf/2106.03954.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot