Paper Reading AI Learner

Synthesising Reinforcement Learning Policies through Set-Valued Inductive Rule Learning

2021-06-10 19:06:28
Youri Coppens, Denis Steckelmacher, Catholijn M. Jonker, Ann Nowé

Abstract

Today's advanced Reinforcement Learning algorithms produce black-box policies, that are often difficult to interpret and trust for a person. We introduce a policy distilling algorithm, building on the CN2 rule mining algorithm, that distills the policy into a rule-based decision system. At the core of our approach is the fact that an RL process does not just learn a policy, a mapping from states to actions, but also produces extra meta-information, such as action values indicating the quality of alternative actions. This meta-information can indicate whether more than one action is near-optimal for a certain state. We extend CN2 to make it able to leverage knowledge about equally-good actions to distill the policy into fewer rules, increasing its interpretability by a person. Then, to ensure that the rules explain a valid, non-degenerate policy, we introduce a refinement algorithm that fine-tunes the rules to obtain good performance when executed in the environment. We demonstrate the applicability of our algorithm on the Mario AI benchmark, a complex task that requires modern reinforcement learning algorithms including neural networks. The explanations we produce capture the learned policy in only a few rules, that allow a person to understand what the black-box agent learned. Source code: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2106.06009

PDF

https://arxiv.org/pdf/2106.06009.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot