Paper Reading AI Learner

Leveraging Static Models for Link Prediction in Temporal Knowledge Graphs

2021-06-29 10:15:17
Wessel Radstok, Mel Chekol

Abstract

The inclusion of temporal scopes of facts in knowledge graph embedding (KGE) presents significant opportunities for improving the resulting embeddings, and consequently for increased performance in downstream applications. Yet, little research effort has focussed on this area and much of the carried out research reports only marginally improved results compared to models trained without temporal scopes (static models). Furthermore, rather than leveraging existing work on static models, they introduce new models specific to temporal knowledge graphs. We propose a novel perspective that takes advantage of the power of existing static embedding models by focussing effort on manipulating the data instead. Our method, SpliMe, draws inspiration from the field of signal processing and early work in graph embedding. We show that SpliMe competes with or outperforms the current state of the art in temporal KGE. Additionally, we uncover issues with the procedure currently used to assess the performance of static models on temporal graphs and introduce two ways to counteract them.

Abstract (translated)

URL

https://arxiv.org/abs/2106.15223

PDF

https://arxiv.org/pdf/2106.15223.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot