Paper Reading AI Learner

Enabling Un-/Semi-Supervised Machine Learning for MDSE of the Real-World CPS/IoT Applications

2021-07-06 15:51:39
Armin Moin, Atta Badii, Stephan Günnemann

Abstract

In this paper, we propose a novel approach to support domain-specific Model-Driven Software Engineering (MDSE) for the real-world use-case scenarios of smart Cyber-Physical Systems (CPS) and the Internet of Things (IoT). We argue that the majority of available data in the nature for Artificial Intelligence (AI), specifically Machine Learning (ML) are unlabeled. Hence, unsupervised and/or semi-supervised ML approaches are the practical choices. However, prior work in the literature of MDSE has considered supervised ML approaches, which only work with labeled training data. Our proposed approach is fully implemented and integrated with an existing state-of-the-art MDSE tool to serve the CPS/IoT domain. Moreover, we validate the proposed approach using a portion of the open data of the REFIT reference dataset for the smart energy systems domain. Our model-to-code transformations (code generators) provide the full source code of the desired IoT services out of the model instances in an automated manner. Currently, we generate the source code in Java and Python. The Python code is responsible for the ML functionalities and uses the APIs of several ML libraries and frameworks, namely Scikit-Learn, Keras and TensorFlow. For unsupervised and semi-supervised learning, the APIs of Scikit-Learn are deployed. In addition to the pure MDSE approach, where certain ML methods, e.g., K-Means, Mini-Batch K-Means, DB-SCAN, Spectral Clustering, Gaussian Mixture Model, Self-Training, Label Propagation and Label Spreading are supported, a more flexible, hybrid approach is also enabled to support the practitioner in deploying a pre-trained ML model with any arbitrary architecture and learning algorithm.

Abstract (translated)

URL

https://arxiv.org/abs/2107.02690

PDF

https://arxiv.org/pdf/2107.02690.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot