Paper Reading AI Learner

Levels of explainable artificial intelligence for human-aligned conversational explanations

2021-07-07 12:19:16
Richard Dazeley, Peter Vamplew, Cameron Foale, Charlotte Young, Sunil Aryal, Francisco Cruz

Abstract

Over the last few years there has been rapid research growth into eXplainable Artificial Intelligence (XAI) and the closely aligned Interpretable Machine Learning (IML). Drivers for this growth include recent legislative changes and increased investments by industry and governments, along with increased concern from the general public. People are affected by autonomous decisions every day and the public need to understand the decision-making process to accept the outcomes. However, the vast majority of the applications of XAI/IML are focused on providing low-level `narrow' explanations of how an individual decision was reached based on a particular datum. While important, these explanations rarely provide insights into an agent's: beliefs and motivations; hypotheses of other (human, animal or AI) agents' intentions; interpretation of external cultural expectations; or, processes used to generate its own explanation. Yet all of these factors, we propose, are essential to providing the explanatory depth that people require to accept and trust the AI's decision-making. This paper aims to define levels of explanation and describe how they can be integrated to create a human-aligned conversational explanation system. In so doing, this paper will survey current approaches and discuss the integration of different technologies to achieve these levels with Broad eXplainable Artificial Intelligence (Broad-XAI), and thereby move towards high-level `strong' explanations.

Abstract (translated)

URL

https://arxiv.org/abs/2107.03178

PDF

https://arxiv.org/pdf/2107.03178.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot