Paper Reading AI Learner

Document Embedding for Scientific Articles: Efficacy of Word Embeddings vs TFIDF

2021-07-11 23:58:39
H.J. Meijer, J. Truong, R. Karimi

Abstract

Over the last few years, neural network derived word embeddings became popular in the natural language processing literature. Studies conducted have mostly focused on the quality and application of word embeddings trained on public available corpuses such as Wikipedia or other news and social media sources. However, these studies are limited to generic text and thus lack technical and scientific nuances such as domain specific vocabulary, abbreviations, or scientific formulas which are commonly used in academic context. This research focuses on the performance of word embeddings applied to a large scale academic corpus. More specifically, we compare quality and efficiency of trained word embeddings to TFIDF representations in modeling content of scientific articles. We use a word2vec skip-gram model trained on titles and abstracts of about 70 million scientific articles. Furthermore, we have developed a benchmark to evaluate content models in a scientific context. The benchmark is based on a categorization task that matches articles to journals for about 1.3 million articles published in 2017. Our results show that content models based on word embeddings are better for titles (short text) while TFIDF works better for abstracts (longer text). However, the slight improvement of TFIDF for larger text comes at the expense of 3.7 times more memory requirement as well as up to 184 times higher computation times which may make it inefficient for online applications. In addition, we have created a 2-dimensional visualization of the journals modeled via embeddings to qualitatively inspect embedding model. This graph shows useful insights and can be used to find competitive journals or gaps to propose new journals.

Abstract (translated)

URL

https://arxiv.org/abs/2107.05151

PDF

https://arxiv.org/pdf/2107.05151.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot