Paper Reading AI Learner

Tea: Program Repair Using Neural Network Based on Program Information Attention Matrix

2021-07-17 15:49:22
Wenshuo Wang, Chen Wu, Liang Cheng, Yang Zhang

Abstract

The advance in machine learning (ML)-driven natural language process (NLP) points a promising direction for automatic bug fixing for software programs, as fixing a buggy program can be transformed to a translation task. While software programs contain much richer information than one-dimensional natural language documents, pioneering work on using ML-driven NLP techniques for automatic program repair only considered a limited set of such information. We hypothesize that more comprehensive information of software programs, if appropriately utilized, can improve the effectiveness of ML-driven NLP approaches in repairing software programs. As the first step towards proving this hypothesis, we propose a unified representation to capture the syntax, data flow, and control flow aspects of software programs, and devise a method to use such a representation to guide the transformer model from NLP in better understanding and fixing buggy programs. Our preliminary experiment confirms that the more comprehensive information of software programs used, the better ML-driven NLP techniques can perform in fixing bugs in these programs.

Abstract (translated)

URL

https://arxiv.org/abs/2107.08262

PDF

https://arxiv.org/pdf/2107.08262.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot