Paper Reading AI Learner

Music Plagiarism Detection via Bipartite Graph Matching

2021-07-21 06:04:47
Tianyao He, Wenxuan Liu, Chen Gong, Junchi Yan, Ning Zhang

Abstract

Nowadays, with the prevalence of social media and music creation tools, musical pieces are spreading much quickly, and music creation is getting much easier. The increasing number of musical pieces have made the problem of music plagiarism prominent. There is an urgent need for a tool that can detect music plagiarism automatically. Researchers have proposed various methods to extract low-level and high-level features of music and compute their similarities. However, low-level features such as cepstrum coefficients have weak relation with the copyright protection of musical pieces. Existing algorithms considering high-level features fail to detect the case in which two musical pieces are not quite similar overall, but have some highly similar regions. This paper proposes a new method named MESMF, which innovatively converts the music plagiarism detection problem into the bipartite graph matching task. It can be solved via the maximum weight matching and edit distances model. We design several kinds of melody representations and the similarity computation methods according to the music theory. The proposed method can deal with the shift, swapping, transposition, and tempo variance problems in music plagiarism. It can also effectively pick out the local similar regions from two musical pieces with relatively low global similarity. We collect a new music plagiarism dataset from real legally-judged music plagiarism cases and conduct detailed ablation studies. Experimental results prove the excellent performance of the proposed algorithm. The source code and our dataset are available at https://anonymous.4open.science/r/a41b8fb4-64cf-4190-a1e1-09b7499a15f5/

Abstract (translated)

URL

https://arxiv.org/abs/2107.09889

PDF

https://arxiv.org/pdf/2107.09889.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot