Paper Reading AI Learner

Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Adaptive Refined Labeling

2021-07-26 05:52:42
Liang Zeng, Lei Wang, Hui Niu, Jian Li, Ruchen Zhang, Zhonghao Dai, Dewei Zhu, Ling Wang

Abstract

Price movement forecasting aims at predicting the future trends of financial assets based on the current market conditions and other relevant information. Recently, machine learning(ML) methods have become increasingly popular and achieved promising results for price movement forecasting in both academia and industry. Most existing ML solutions formulate the forecasting problem as a classification(to predict the direction) or a regression(to predict the return) problem in the entire set of training data. However, due to the extremely low signal-to-noise ratio and stochastic nature of financial data, good trading opportunities are extremely scarce. As a result, without careful selection of potentially profitable samples, such ML methods are prone to capture the patterns of noises instead of real signals. To address the above issues, we propose a novel framework-LARA(Locality-Aware Attention and Adaptive Refined Labeling), which contains the following three components: 1)Locality-aware attention automatically extracts the potentially profitable samples by attending to their label information in order to construct a more accurate classifier on these selected samples. 2)Adaptive refined labeling further iteratively refines the labels, alleviating the noise of samples. 3)Equipped with metric learning techniques, Locality-aware attention enjoys task-specific distance metrics and distributes attention on potentially profitable samples in a more effective way. To validate our method, we conduct comprehensive experiments on three real-world financial markets: ETFs, the China's A-share stock market, and the cryptocurrency market. LARA achieves superior performance compared with the time-series analysis methods and a set of machine learning based competitors on the Qlib platform. Extensive ablation studies and experiments demonstrate that LARA indeed captures more reliable trading opportunities.

Abstract (translated)

URL

https://arxiv.org/abs/2107.11972

PDF

https://arxiv.org/pdf/2107.11972.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot