Paper Reading AI Learner

Unveiling the potential of Graph Neural Networks for robust Intrusion Detection

2021-07-30 16:56:39
David Pujol-Perich, José Suárez-Varela, Albert Cabellos-Aparicio, Pere Barlet-Ros

Abstract

The last few years have seen an increasing wave of attacks with serious economic and privacy damages, which evinces the need for accurate Network Intrusion Detection Systems (NIDS). Recent works propose the use of Machine Learning (ML) techniques for building such systems (e.g., decision trees, neural networks). However, existing ML-based NIDS are barely robust to common adversarial attacks, which limits their applicability to real networks. A fundamental problem of these solutions is that they treat and classify flows independently. In contrast, in this paper we argue the importance of focusing on the structural patterns of attacks, by capturing not only the individual flow features, but also the relations between different flows (e.g., the source/destination hosts they share). To this end, we use a graph representation that keeps flow records and their relationships, and propose a novel Graph Neural Network (GNN) model tailored to process and learn from such graph-structured information. In our evaluation, we first show that the proposed GNN model achieves state-of-the-art results in the well-known CIC-IDS2017 dataset. Moreover, we assess the robustness of our solution under two common adversarial attacks, that intentionally modify the packet size and inter-arrival times to avoid detection. The results show that our model is able to maintain the same level of accuracy as in previous experiments, while state-of-the-art ML techniques degrade up to 50% their accuracy (F1-score) under these attacks. This unprecedented level of robustness is mainly induced by the capability of our GNN model to learn flow patterns of attacks structured as graphs.

Abstract (translated)

URL

https://arxiv.org/abs/2107.14756

PDF

https://arxiv.org/pdf/2107.14756.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot