Paper Reading AI Learner

RadioMic: Sound Sensing via mmWave Signals

2021-08-06 15:24:11
Muhammed Zahid Ozturk, Chenshu Wu, Beibei Wang, K. J. Ray Liu

Abstract

Voice interfaces has become an integral part of our lives, with the proliferation of smart devices. Today, IoT devices mainly rely on microphones to sense sound. Microphones, however, have fundamental limitations, such as weak source separation, limited range in the presence of acoustic insulation, and being prone to multiple side-channel attacks. In this paper, we propose RadioMic, a radio-based sound sensing system to mitigate these issues and enrich sound applications. RadioMic constructs sound based on tiny vibrations on active sources (e.g., a speaker or human throat) or object surfaces (e.g., paper bag), and can work through walls, even a soundproof one. To convert the extremely weak sound vibration in the radio signals into sound signals, RadioMic introduces radio acoustics, and presents training-free approaches for robust sound detection and high-fidelity sound recovery. It then exploits a neural network to further enhance the recovered sound by expanding the recoverable frequencies and reducing the noises. RadioMic translates massive online audios to synthesized data to train the network, and thus minimizes the need of RF data. We thoroughly evaluate RadioMic under different scenarios using a commodity mmWave radar. The results show RadioMic outperforms the state-of-the-art systems significantly. We believe RadioMic provides new horizons for sound sensing and inspires attractive sensing capabilities of mmWave sensing devices

Abstract (translated)

URL

https://arxiv.org/abs/2108.03164

PDF

https://arxiv.org/pdf/2108.03164.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot