Paper Reading AI Learner

Towards to Robust and Generalized Medical Image Segmentation Framework


Abstract

To mitigate the radiologist's workload, computer-aided diagnosis with the capability to review and analyze medical images is gradually deployed. Deep learning-based region of interest segmentation is among the most exciting use cases. However, this paradigm is restricted in real-world clinical applications due to poor robustness and generalization. The issue is more sinister with a lack of training data. In this paper, we address the challenge from the representation learning point of view. We investigate that the collapsed representations, as one of the main reasons which caused poor robustness and generalization, could be avoided through transfer learning. Therefore, we propose a novel two-stage framework for robust generalized segmentation. In particular, an unsupervised Tile-wise AutoEncoder (T-AE) pretraining architecture is coined to learn meaningful representation for improving the generalization and robustness of the downstream tasks. Furthermore, the learned knowledge is transferred to the segmentation benchmark. Coupled with an image reconstruction network, the representation keeps to be decoded, encouraging the model to capture more semantic features. Experiments of lung segmentation on multi chest X-ray datasets are conducted. Empirically, the related experimental results demonstrate the superior generalization capability of the proposed framework on unseen domains in terms of high performance and robustness to corruption, especially under the scenario of the limited training data.

Abstract (translated)

URL

https://arxiv.org/abs/2108.03823

PDF

https://arxiv.org/pdf/2108.03823.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot