Paper Reading AI Learner

Learning Autonomous Mobility Using Real Demonstration Data

2021-08-10 17:08:26
Jiacheng Gu, Zhibin Li

Abstract

This work proposed an efficient learning-based framework to learn feedback control policies from human teleoperated demonstrations, which achieved obstacle negotiation, staircase traversal, slipping control and parcel delivery for a tracked robot. Due to uncertainties in real-world scenarios, eg obstacle and slippage, closed-loop feedback control plays an important role in improving robustness and resilience, but the control laws are difficult to program manually for achieving autonomous behaviours. We formulated an architecture based on a long-short-term-memory (LSTM) neural network, which effectively learn reactive control policies from human demonstrations. Using datasets from a few real demonstrations, our algorithm can directly learn successful policies, including obstacle-negotiation, stair-climbing and delivery, fall recovery and corrective control of slippage. We proposed decomposition of complex robot actions to reduce the difficulty of learning the long-term dependencies. Furthermore, we proposed a method to efficiently handle non-optimal demos and to learn new skills, since collecting enough demonstration can be time-consuming and sometimes very difficult on a real robotic system.

Abstract (translated)

URL

https://arxiv.org/abs/2108.04792

PDF

https://arxiv.org/pdf/2108.04792.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot