Paper Reading AI Learner

The paradox of the compositionality of natural language: a neural machine translation case study

2021-08-12 17:57:23
Verna Dankers, Elia Bruni, Dieuwke Hupkes

Abstract

Moving towards human-like linguistic performance is often argued to require compositional generalisation. Whether neural networks exhibit this ability is typically studied using artificial languages, for which the compositionality of input fragments can be guaranteed and their meanings algebraically composed. However, compositionality in natural language is vastly more complex than this rigid, arithmetics-like version of compositionality, and as such artificial compositionality tests do not allow us to draw conclusions about how neural models deal with compositionality in more realistic scenarios. In this work, we re-instantiate three compositionality tests from the literature and reformulate them for neural machine translation (NMT). The results highlight two main issues: the inconsistent behaviour of NMT models and their inability to (correctly) modulate between local and global processing. Aside from an empirical study, our work is a call to action: we should rethink the evaluation of compositionality in neural networks of natural language, where composing meaning is not as straightforward as doing the math.

Abstract (translated)

URL

https://arxiv.org/abs/2108.05885

PDF

https://arxiv.org/pdf/2108.05885.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot