Paper Reading AI Learner

On The Compensation Between Magnitude and Phase in Speech Separation

2021-08-11 23:03:31
Zhong-Qiu Wang, Gordon Wichern, Jonathan Le Roux

Abstract

Deep neural network (DNN) based end-to-end optimization in the complex time-frequency (T-F) domain or time domain has shown considerable potential in monaural speech separation. Many recent studies optimize loss functions defined solely in the time or complex domain, without including a loss on magnitude. Although such loss functions typically produce better scores if the evaluation metrics are objective time-domain metrics, they however produce worse scores on speech quality and intelligibility metrics and usually lead to worse speech recognition performance, compared with including a loss on magnitude. While this phenomenon has been experimentally observed by many studies, it is often not accurately explained and there lacks a thorough understanding on its fundamental cause. This paper provides a novel view from the perspective of the implicit compensation between estimated magnitude and phase. Analytical results based on monaural speech separation and robust automatic speech recognition (ASR) tasks in noisy-reverberant conditions support the validity of our view.

Abstract (translated)

URL

https://arxiv.org/abs/2108.05470

PDF

https://arxiv.org/pdf/2108.05470.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot