Paper Reading AI Learner

Coalesced Multi-Output Tsetlin Machines with Clause Sharing

2021-08-17 12:52:01
Sondre Glimsdal, Ole-Christoffer Granmo

Abstract

Using finite-state machines to learn patterns, Tsetlin machines (TMs) have obtained competitive accuracy and learning speed across several benchmarks, with frugal memory- and energy footprint. A TM represents patterns as conjunctive clauses in propositional logic (AND-rules), each clause voting for or against a particular output. While efficient for single-output problems, one needs a separate TM per output for multi-output problems. Employing multiple TMs hinders pattern reuse because each TM then operates in a silo. In this paper, we introduce clause sharing, merging multiple TMs into a single one. Each clause is related to each output by using a weight. A positive weight makes the clause vote for output $1$, while a negative weight makes the clause vote for output $0$. The clauses thus coalesce to produce multiple outputs. The resulting coalesced Tsetlin Machine (CoTM) simultaneously learns both the weights and the composition of each clause by employing interacting Stochastic Searching on the Line (SSL) and Tsetlin Automata (TA) teams. Our empirical results on MNIST, Fashion-MNIST, and Kuzushiji-MNIST show that CoTM obtains significantly higher accuracy than TM on $50$- to $1$K-clause configurations, indicating an ability to repurpose clauses. E.g., accuracy goes from $71.99$% to $89.66$% on Fashion-MNIST when employing $50$ clauses per class (22 Kb memory). While TM and CoTM accuracy is similar when using more than $1$K clauses per class, CoTM reaches peak accuracy $3\times$ faster on MNIST with $8$K clauses. We further investigate robustness towards imbalanced training data. Our evaluations on imbalanced versions of IMDb- and CIFAR10 data show that CoTM is robust towards high degrees of class imbalance. Being able to share clauses, we believe CoTM will enable new TM application domains that involve multiple outputs, such as learning language models and auto-encoding.

Abstract (translated)

URL

https://arxiv.org/abs/2108.07594

PDF

https://arxiv.org/pdf/2108.07594.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot