Paper Reading AI Learner

Learning Effective and Efficient Embedding via an Adaptively-Masked Twins-based Layer

2021-08-24 11:50:49
Bencheng Yan, Pengjie Wang, Kai Zhang, Wei Lin, Kuang-Chih Lee, Jian Xu, Bo Zheng

Abstract

Embedding learning for categorical features is crucial for the deep learning-based recommendation models (DLRMs). Each feature value is mapped to an embedding vector via an embedding learning process. Conventional methods configure a fixed and uniform embedding size to all feature values from the same feature field. However, such a configuration is not only sub-optimal for embedding learning but also memory costly. Existing methods that attempt to resolve these problems, either rule-based or neural architecture search (NAS)-based, need extensive efforts on the human design or network training. They are also not flexible in embedding size selection or in warm-start-based applications. In this paper, we propose a novel and effective embedding size selection scheme. Specifically, we design an Adaptively-Masked Twins-based Layer (AMTL) behind the standard embedding layer. AMTL generates a mask vector to mask the undesired dimensions for each embedding vector. The mask vector brings flexibility in selecting the dimensions and the proposed layer can be easily added to either untrained or trained DLRMs. Extensive experimental evaluations show that the proposed scheme outperforms competitive baselines on all the benchmark tasks, and is also memory-efficient, saving 60\% memory usage without compromising any performance metrics.

Abstract (translated)

URL

https://arxiv.org/abs/2108.11513

PDF

https://arxiv.org/pdf/2108.11513.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot