Paper Reading AI Learner

Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic Data Imputation with Complex Missing Patterns

2021-09-17 05:47:17
Yuebing Liang, Zhan Zhao, Lijun Sun

Abstract

Missing data is an inevitable and ubiquitous problem for traffic data collection in intelligent transportation systems. Despite extensive research regarding traffic data imputation, there still exist two limitations to be addressed: first, existing approaches fail to capture the complex spatiotemporal dependencies in traffic data, especially the dynamic spatial dependencies evolving with time; second, prior studies mainly focus on randomly missing patterns while other more complex missing scenarios are less discussed. To fill these research gaps, we propose a novel deep learning framework called Dynamic Spatiotemporal Graph Convolutional Neural Networks (DSTGCN) to impute missing traffic data. The model combines the recurrent architecture with graph-based convolutions to model the spatiotemporal dependencies. Moreover, we introduce a graph structure estimation technique to model the dynamic spatial dependencies from real-time traffic information and road network structure. Extensive experiments based on two public traffic speed datasets are conducted to compare our proposed model with state-of-the-art deep learning approaches in four types of missing patterns. The results show that our proposed model outperforms existing deep learning models in all kinds of missing scenarios and the graph structure estimation technique contributes to the model performance. We further compare our proposed model with a tensor factorization model and find distinct behaviors across different model families under different training schemes and data availability.

Abstract (translated)

URL

https://arxiv.org/abs/2109.08357

PDF

https://arxiv.org/pdf/2109.08357.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot