Paper Reading AI Learner

Data-Driven Off-Policy Estimator Selection: An Application in User Marketing on An Online Content Delivery Service

2021-09-17 15:53:53
Yuta Saito, Takuma Udagawa, Kei Tateno

Abstract

Off-policy evaluation (OPE) is the method that attempts to estimate the performance of decision making policies using historical data generated by different policies without conducting costly online A/B tests. Accurate OPE is essential in domains such as healthcare, marketing or recommender systems to avoid deploying poor performing policies, as such policies may hart human lives or destroy the user experience. Thus, many OPE methods with theoretical backgrounds have been proposed. One emerging challenge with this trend is that a suitable estimator can be different for each application setting. It is often unknown for practitioners which estimator to use for their specific applications and purposes. To find out a suitable estimator among many candidates, we use a data-driven estimator selection procedure for off-policy policy performance estimators as a practical solution. As proof of concept, we use our procedure to select the best estimator to evaluate coupon treatment policies on a real-world online content delivery service. In the experiment, we first observe that a suitable estimator might change with different definitions of the outcome variable, and thus the accurate estimator selection is critical in real-world applications of OPE. Then, we demonstrate that, by utilizing the estimator selection procedure, we can easily find out suitable estimators for each purpose.

Abstract (translated)

URL

https://arxiv.org/abs/2109.08621

PDF

https://arxiv.org/pdf/2109.08621.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot