Paper Reading AI Learner

FooBaR: Fault Fooling Backdoor Attack on Neural Network Training

2021-09-23 09:43:19
Jakub Breier, Xiaolu Hou, Martín Ochoa, Jesus Solano

Abstract

Neural network implementations are known to be vulnerable to physical attack vectors such as fault injection attacks. As of now, these attacks were only utilized during the inference phase with the intention to cause a misclassification. In this work, we explore a novel attack paradigm by injecting faults during the training phase of a neural network in a way that the resulting network can be attacked during deployment without the necessity of further faulting. In particular, we discuss attacks against ReLU activation functions that make it possible to generate a family of malicious inputs, which are called fooling inputs, to be used at inference time to induce controlled misclassifications. Such malicious inputs are obtained by mathematically solving a system of linear equations that would cause a particular behaviour on the attacked activation functions, similar to the one induced in training through faulting. We call such attacks fooling backdoors as the fault attacks at the training phase inject backdoors into the network that allow an attacker to produce fooling inputs. We evaluate our approach against multi-layer perceptron networks and convolutional networks on a popular image classification task obtaining high attack success rates (from 60% to 100%) and high classification confidence when as little as 25 neurons are attacked while preserving high accuracy on the originally intended classification task.

Abstract (translated)

URL

https://arxiv.org/abs/2109.11249

PDF

https://arxiv.org/pdf/2109.11249.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot