Paper Reading AI Learner

Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

2021-10-11 17:48:18
Laura Smith, J. Chase Kew, Xue Bin Peng, Sehoon Ha, Jie Tan, Sergey Levine

Abstract

Legged robots are physically capable of traversing a wide range of challenging environments, but designing controllers that are sufficiently robust to handle this diversity has been a long-standing challenge in robotics. Reinforcement learning presents an appealing approach for automating the controller design process and has been able to produce remarkably robust controllers when trained in a suitable range of environments. However, it is difficult to predict all likely conditions the robot will encounter during deployment and enumerate them at training-time. What if instead of training controllers that are robust enough to handle any eventuality, we enable the robot to continually learn in any setting it finds itself in? This kind of real-world reinforcement learning poses a number of challenges, including efficiency, safety, and autonomy. To address these challenges, we propose a practical robot reinforcement learning system for fine-tuning locomotion policies in the real world. We demonstrate that a modest amount of real-world training can substantially improve performance during deployment, and this enables a real A1 quadrupedal robot to autonomously fine-tune multiple locomotion skills in a range of environments, including an outdoor lawn and a variety of indoor terrains.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05457

PDF

https://arxiv.org/pdf/2110.05457.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot