Paper Reading AI Learner

Wind-robust sound event detection and denoising for bioacoustics

2021-10-11 22:12:00
Julius Juodakis, Stephen Marsland

Abstract

Sound recordings are used in various ecological studies, including acoustic wildlife monitoring. Such surveys require automatic detection of target sound events. However, current detectors, especially those relying on band-limited energy, are severely impacted by wind. The rapid dynamics of this noise invalidate standard noise estimators, and no satisfactory method for dealing with it exists in bioacoustics, where simple training and generalization between conditions are important. We propose to estimate the transient noise level by fitting short-term spectrum models to a wavelet packet representation. This estimator is then combined with log-spectral subtraction to stabilize the background level. The resulting adjusted wavelet series can be analysed by standard energy detectors. We use real monitoring data to tune this workflow, and test it on two acoustic surveys of birds. Additionally, we show how the estimator can be incorporated in a denoising method to restore sound. The proposed noise-robust workflow greatly reduced the number of false alarms in the surveys, compared to unadjusted energy detection. As a result, the survey efficiency (precision of the estimated call density) improved for both species. Denoising was also more effective when using the short-term estimate, whereas standard wavelet shrinkage with a constant noise estimate struggled to remove the effects of wind. In contrast to existing methods, the proposed estimator can adjust for transient broadband noises without requiring additional hardware or extensive tuning to each species. It improved the detection workflow based on very little training data, making it particularly attractive for detection of rare species.

Abstract (translated)

URL

https://arxiv.org/abs/2110.05632

PDF

https://arxiv.org/pdf/2110.05632.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot