Paper Reading AI Learner

AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations

2021-10-22 15:48:31
Simon Giebenhain, Bastian Goldlücke

Abstract

This paper introduces Attentive Implicit Representation Networks (AIR-Nets), a simple, but highly effective architecture for 3D reconstruction from point clouds. Since representing 3D shapes in a local and modular fashion increases generalization and reconstruction quality, AIR-Nets encode an input point cloud into a set of local latent vectors anchored in 3D space, which locally describe the object's geometry, as well as a global latent description, enforcing global consistency. Our model is the first grid-free, encoder-based approach that locally describes an implicit function. The vector attention mechanism from [Zhao et al. 2020] serves as main point cloud processing module, and allows for permutation invariance and translation equivariance. When queried with a 3D coordinate, our decoder gathers information from the global and nearby local latent vectors in order to predict an occupancy value. Experiments on the ShapeNet dataset show that AIR-Nets significantly outperform previous state-of-the-art encoder-based, implicit shape learning methods and especially dominate in the sparse setting. Furthermore, our model generalizes well to the FAUST dataset in a zero-shot setting. Finally, since AIR-Nets use a sparse latent representation and follow a simple operating scheme, the model offers several exiting avenues for future work. Our code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2110.11860

PDF

https://arxiv.org/pdf/2110.11860.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot