Paper Reading AI Learner

Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks

2021-11-24 09:54:50
Loic Jezequel, Ngoc-Son Vu, Jean Beaudet, Aymeric Histace

Abstract

Deep anomaly detection has proven to be an efficient and robust approach in several fields. The introduction of self-supervised learning has greatly helped many methods including anomaly detection where simple geometric transformation recognition tasks are used. However these methods do not perform well on fine-grained problems since they lack finer features and are usually highly dependent on the anomaly type. In this paper, we explore each step of self-supervised anomaly detection with pretext tasks. First, we introduce novel discriminative and generative tasks which focus on different visual cues. A piece-wise jigsaw puzzle task focuses on structure cues, while a tint rotation recognition is used on each piece for colorimetry and a partial re-colorization task is performed. In order for the re-colorization task to focus more on the object rather than on the background, we propose to include the contextual color information of the image border. Then, we present a new out-of-distribution detection function and highlight its better stability compared to other out-of-distribution detection methods. Along with it, we also experiment different score fusion functions. Finally, we evaluate our method on a comprehensive anomaly detection protocol composed of object anomalies with classical object recognition, style anomalies with fine-grained classification and local anomalies with face anti-spoofing datasets. Our model can more accurately learn highly discriminative features using these self-supervised tasks. It outperforms state-of-the-art with up to 36% relative error improvement on object anomalies and 40% on face anti-spoofing problems.

Abstract (translated)

URL

https://arxiv.org/abs/2111.12379

PDF

https://arxiv.org/pdf/2111.12379.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot