Paper Reading AI Learner

How Facial Features Convey Attention in Stationary Environments

2021-11-29 20:11:57
Janelle Domantay

Abstract

Awareness detection technologies have been gaining traction in a variety of enterprises; most often used for driver fatigue detection, recent research has shifted towards using computer vision technologies to analyze user attention in environments such as online classrooms. This paper aims to extend previous research on distraction detection by analyzing which visual features contribute most to predicting awareness and fatigue. We utilized the open source facial analysis toolkit OpenFace in order to analyze visual data of subjects at varying levels of attentiveness. Then, using a Support-Vector Machine (SVM) we created several prediction models for user attention and identified Histogram of Oriented Gradients (HOG) and Action Units to be the greatest predictors of the features we tested. We also compared the performance of this SVM to deep learning approaches that utilize Convolutional and/or Recurrent neural networks (CNN's and CRNN's). Interestingly, CRNN's did not appear to perform significantly better than their CNN counterparts. While deep learning methods achieved greater prediction accuracy, SVMs utilized less resources and, using certain parameters, were able to approach the performance of deep learning methods.

Abstract (translated)

URL

https://arxiv.org/abs/2111.14931

PDF

https://arxiv.org/pdf/2111.14931.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot