Paper Reading AI Learner

Image denoising by Super Neurons: Why go deep?

2021-11-29 20:52:10
Junaid Malik, Serkan Kiranyaz, Moncef Gabbouj

Abstract

Classical image denoising methods utilize the non-local self-similarity principle to effectively recover image content from noisy images. Current state-of-the-art methods use deep convolutional neural networks (CNNs) to effectively learn the mapping from noisy to clean images. Deep denoising CNNs manifest a high learning capacity and integrate non-local information owing to the large receptive field yielded by numerous cascade of hidden layers. However, deep networks are also computationally complex and require large data for training. To address these issues, this study draws the focus on the Self-organized Operational Neural Networks (Self-ONNs) empowered by a novel neuron model that can achieve a similar or better denoising performance with a compact and shallow model. Recently, the concept of super-neurons has been introduced which augment the non-linear transformations of generative neurons by utilizing non-localized kernel locations for an enhanced receptive field size. This is the key accomplishment which renders the need for a deep network configuration. As the integration of non-local information is known to benefit denoising, in this work we investigate the use of super neurons for both synthetic and real-world image denoising. We also discuss the practical issues in implementing the super neuron model on GPUs and propose a trade-off between the heterogeneity of non-localized operations and computational complexity. Our results demonstrate that with the same width and depth, Self-ONNs with super neurons provide a significant boost of denoising performance over the networks with generative and convolutional neurons for both denoising tasks. Moreover, results demonstrate that Self-ONNs with super neurons can achieve a competitive and superior synthetic denoising performances than well-known deep CNN denoisers for synthetic and real-world denoising, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2111.14948

PDF

https://arxiv.org/pdf/2111.14948.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot