Paper Reading AI Learner

MLP Architectures for Vision-and-Language Modeling: An Empirical Study

2021-12-08 18:26:19
Yixin Nie, Linjie Li, Zhe Gan, Shuohang Wang, Chenguang Zhu, Michael Zeng, Zicheng Liu, Mohit Bansal, Lijuan Wang

Abstract

We initiate the first empirical study on the use of MLP architectures for vision-and-language (VL) fusion. Through extensive experiments on 5 VL tasks and 5 robust VQA benchmarks, we find that: (i) Without pre-training, using MLPs for multimodal fusion has a noticeable performance gap compared to transformers; (ii) However, VL pre-training can help close the performance gap; (iii) Instead of heavy multi-head attention, adding tiny one-head attention to MLPs is sufficient to achieve comparable performance to transformers. Moreover, we also find that the performance gap between MLPs and transformers is not widened when being evaluated on the harder robust VQA benchmarks, suggesting using MLPs for VL fusion can generalize roughly to a similar degree as using transformers. These results hint that MLPs can effectively learn to align vision and text features extracted from lower-level encoders without heavy reliance on self-attention. Based on this, we ask an even bolder question: can we have an all-MLP architecture for VL modeling, where both VL fusion and the vision encoder are replaced with MLPs? Our result shows that an all-MLP VL model is sub-optimal compared to state-of-the-art full-featured VL models when both of them get pre-trained. However, pre-training an all-MLP can surprisingly achieve a better average score than full-featured transformer models without pre-training. This indicates the potential of large-scale pre-training of MLP-like architectures for VL modeling and inspires the future research direction on simplifying well-established VL modeling with less inductive design bias. Our code is publicly available at: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2112.04453

PDF

https://arxiv.org/pdf/2112.04453.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot