Paper Reading AI Learner

Active learning with MaskAL reduces annotation effort for training Mask R-CNN

2021-12-13 12:08:27
Pieter M. Blok, Gert Kootstra, Hakim Elchaoui Elghor, Boubacar Diallo, Frits K. van Evert, Eldert J. van Henten

Abstract

The generalisation performance of a convolutional neural network (CNN) is influenced by the quantity, quality, and variety of the training images. Training images must be annotated, and this is time consuming and expensive. The goal of our work was to reduce the number of annotated images needed to train a CNN while maintaining its performance. We hypothesised that the performance of a CNN can be improved faster by ensuring that the set of training images contains a large fraction of hard-to-classify images. The objective of our study was to test this hypothesis with an active learning method that can automatically select the hard-to-classify images. We developed an active learning method for Mask Region-based CNN (Mask R-CNN) and named this method MaskAL. MaskAL involved the iterative training of Mask R-CNN, after which the trained model was used to select a set of unlabelled images about which the model was uncertain. The selected images were then annotated and used to retrain Mask R-CNN, and this was repeated for a number of sampling iterations. In our study, Mask R-CNN was trained on 2500 broccoli images that were selected through 12 sampling iterations by either MaskAL or a random sampling method from a training set of 14,000 broccoli images. For all sampling iterations, MaskAL performed significantly better than the random sampling. Furthermore, MaskAL had the same performance after sampling 900 images as the random sampling had after 2300 images. Compared to a Mask R-CNN model that was trained on the entire training set (14,000 images), MaskAL achieved 93.9% of its performance with 17.9% of its training data. The random sampling achieved 81.9% of its performance with 16.4% of its training data. We conclude that by using MaskAL, the annotation effort can be reduced for training Mask R-CNN on a broccoli dataset. Our software is available on this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2112.06586

PDF

https://arxiv.org/pdf/2112.06586.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot