Paper Reading AI Learner

Assessing the Impact of Attention and Self-Attention Mechanisms on the Classification of Skin Lesions

2021-12-23 18:02:48
Rafael Pedro, Arlindo L. Oliveira

Abstract

Attention mechanisms have raised significant interest in the research community, since they promise significant improvements in the performance of neural network architectures. However, in any specific problem, we still lack a principled way to choose specific mechanisms and hyper-parameters that lead to guaranteed improvements. More recently, self-attention has been proposed and widely used in transformer-like architectures, leading to significant breakthroughs in some applications. In this work we focus on two forms of attention mechanisms: attention modules and self-attention. Attention modules are used to reweight the features of each layer input tensor. Different modules have different ways to perform this reweighting in fully connected or convolutional layers. The attention models studied are completely modular and in this work they will be used with the popular ResNet architecture. Self-Attention, originally proposed in the area of Natural Language Processing makes it possible to relate all the items in an input sequence. Self-Attention is becoming increasingly popular in Computer Vision, where it is sometimes combined with convolutional layers, although some recent architectures do away entirely with convolutions. In this work, we study and perform an objective comparison of a number of different attention mechanisms in a specific computer vision task, the classification of samples in the widely used Skin Cancer MNIST dataset. The results show that attention modules do sometimes improve the performance of convolutional neural network architectures, but also that this improvement, although noticeable and statistically significant, is not consistent in different settings. The results obtained with self-attention mechanisms, on the other hand, show consistent and significant improvements, leading to the best results even in architectures with a reduced number of parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2112.12748

PDF

https://arxiv.org/pdf/2112.12748.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot