Paper Reading AI Learner

Self-Attention Generative Adversarial Network for Iterative Reconstruction of CT Images

2021-12-23 19:20:38
Ruiwen Xing, Thomas Humphries, Dong Si

Abstract

Computed tomography (CT) uses X-ray measurements taken from sensors around the body to generate tomographic images of the human body. Conventional reconstruction algorithms can be used if the X-ray data are adequately sampled and of high quality; however, concerns such as reducing dose to the patient, or geometric limitations on data acquisition, may result in low quality or incomplete data. Images reconstructed from these data using conventional methods are of poor quality, due to noise and other artifacts. The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete CT scan data, including low-dose, sparse-view, and limited-angle scenarios. To accomplish this task, we train a generative adversarial network (GAN) as a signal prior, to be used in conjunction with the iterative simultaneous algebraic reconstruction technique (SART) for CT data. The network includes a self-attention block to model long-range dependencies in the data. We compare our Self-Attention GAN for CT image reconstruction with several state-of-the-art approaches, including denoising cycle GAN, CIRCLE GAN, and a total variation superiorized algorithm. Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2112.12810

PDF

https://arxiv.org/pdf/2112.12810.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot