Paper Reading AI Learner

Pseudocylindrical Convolutions for Learned Omnidirectional Image Compression

2021-12-25 12:18:32
Mu Li, Kede Ma, Jinxing Li, David Zhang

Abstract

Although equirectangular projection (ERP) is a convenient form to store omnidirectional images (also known as 360-degree images), it is neither equal-area nor conformal, thus not friendly to subsequent visual communication. In the context of image compression, ERP will over-sample and deform things and stuff near the poles, making it difficult for perceptually optimal bit allocation. In conventional 360-degree image compression, techniques such as region-wise packing and tiled representation are introduced to alleviate the over-sampling problem, achieving limited success. In this paper, we make one of the first attempts to learn deep neural networks for omnidirectional image compression. We first describe parametric pseudocylindrical representation as a generalization of common pseudocylindrical map projections. A computationally tractable greedy method is presented to determine the (sub)-optimal configuration of the pseudocylindrical representation in terms of a novel proxy objective for rate-distortion performance. We then propose pseudocylindrical convolutions for 360-degree image compression. Under reasonable constraints on the parametric representation, the pseudocylindrical convolution can be efficiently implemented by standard convolution with the so-called pseudocylindrical padding. To demonstrate the feasibility of our idea, we implement an end-to-end 360-degree image compression system, consisting of the learned pseudocylindrical representation, an analysis transform, a non-uniform quantizer, a synthesis transform, and an entropy model. Experimental results on $19,790$ omnidirectional images show that our method achieves consistently better rate-distortion performance than the competing methods. Moreover, the visual quality by our method is significantly improved for all images at all bitrates.

Abstract (translated)

URL

https://arxiv.org/abs/2112.13227

PDF

https://arxiv.org/pdf/2112.13227.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot