Paper Reading AI Learner

Multi-Band Wi-Fi Sensing with Matched Feature Granularity

2021-12-28 05:50:58
Jianyuan Yu, Pu (Perry) Wang, Toshiaki Koike-Akino, Ye Wang, Philip V. Orlik, R. Michael Buehrer

Abstract

Complementary to the fine-grained channel state information (CSI) from the physical layer and coarse-grained received signal strength indicator (RSSI) measurements, the mid-grained spatial beam attributes (e.g., beam SNR) that are available at millimeter-wave (mmWave) bands during the mandatory beam training phase can be repurposed for Wi-Fi sensing applications. In this paper, we propose a multi-band Wi-Fi fusion method for Wi-Fi sensing that hierarchically fuses the features from both the fine-grained CSI at sub-6 GHz and the mid-grained beam SNR at 60 GHz in a granularity matching framework. The granularity matching is realized by pairing two feature maps from the CSI and beam SNR at different granularity levels and linearly combining all paired feature maps into a fused feature map with learnable weights. To further address the issue of limited labeled training data, we propose an autoencoder-based multi-band Wi-Fi fusion network that can be pre-trained in an unsupervised fashion. Once the autoencoder-based fusion network is pre-trained, we detach the decoders and append multi-task sensing heads to the fused feature map by fine-tuning the fusion block and re-training the multi-task heads from the scratch. The multi-band Wi-Fi fusion framework is thoroughly validated by in-house experimental Wi-Fi sensing datasets spanning three tasks: 1) pose recognition; 2) occupancy sensing; and 3) indoor localization. Comparison to four baseline methods (i.e., CSI-only, beam SNR-only, input fusion, and feature fusion) demonstrates the granularity matching improves the multi-task sensing performance. Quantitative performance is evaluated as a function of the number of labeled training data, latent space dimension, and fine-tuning learning rates.

Abstract (translated)

URL

https://arxiv.org/abs/2112.14006

PDF

https://arxiv.org/pdf/2112.14006.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot