Paper Reading AI Learner

Detecting Human-to-Human-or-Object Interactions with DIABOLO

2022-01-07 11:00:11
Astrid Orcesi, Romaric Audigier, Fritz Poka Toukam, Bertrand Luvison

Abstract

Detecting human interactions is crucial for human behavior analysis. Many methods have been proposed to deal with Human-to-Object Interaction (HOI) detection, i.e., detecting in an image which person and object interact together and classifying the type of interaction. However, Human-to-Human Interactions, such as social and violent interactions, are generally not considered in available HOI training datasets. As we think these types of interactions cannot be ignored and decorrelated from HOI when analyzing human behavior, we propose a new interaction dataset to deal with both types of human interactions: Human-to-Human-or-Object (H2O). In addition, we introduce a novel taxonomy of verbs, intended to be closer to a description of human body attitude in relation to the surrounding targets of interaction, and more independent of the environment. Unlike some existing datasets, we strive to avoid defining synonymous verbs when their use highly depends on the target type or requires a high level of semantic interpretation. As H2O dataset includes V-COCO images annotated with this new taxonomy, images obviously contain more interactions. This can be an issue for HOI detection methods whose complexity depends on the number of people, targets or interactions. Thus, we propose DIABOLO (Detecting InterActions By Only Looking Once), an efficient subject-centric single-shot method to detect all interactions in one forward pass, with constant inference time independent of image content. In addition, this multi-task network simultaneously detects all people and objects. We show how sharing a network for these tasks does not only save computation resource but also improves performance collaboratively. Finally, DIABOLO is a strong baseline for the new proposed challenge of H2O Interaction detection, as it outperforms all state-of-the-art methods when trained and evaluated on HOI dataset V-COCO.

Abstract (translated)

URL

https://arxiv.org/abs/2201.02396

PDF

https://arxiv.org/pdf/2201.02396.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot