Paper Reading AI Learner

Technical Report for ICCV 2021 Challenge SSLAD-Track3B: Transformers Are Better Continual Learners

2022-01-13 12:41:36
Duo Li, Guimei Cao, Yunlu Xu, Zhanzhan Cheng, Yi Niu

Abstract

In the SSLAD-Track 3B challenge on continual learning, we propose the method of COntinual Learning with Transformer (COLT). We find that transformers suffer less from catastrophic forgetting compared to convolutional neural network. The major principle of our method is to equip the transformer based feature extractor with old knowledge distillation and head expanding strategies to compete catastrophic forgetting. In this report, we first introduce the overall framework of continual learning for object detection. Then, we analyse the key elements' effect on withstanding catastrophic forgetting in our solution. Our method achieves 70.78 mAP on the SSLAD-Track 3B challenge test set.

Abstract (translated)

URL

https://arxiv.org/abs/2201.04924

PDF

https://arxiv.org/pdf/2201.04924.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot